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Abstract-A transient contact problem with frictional heating for two sliding half-spaces is
considered. One of the two half-spaces is assumed to be slightly curved to give a Hertzian initial
pressure distribution; the other is a rigid non-conductor. The problem is formulated in terms of one
integral equation with unknown heat flux at the interface. The equation is solved numerically, using
appropriately chosen Green's functions. Contact pressure and temperatures are found for various
values of an independent parameter-the ratio of initial width of contact to the width in the steady
state.

INTRODUCTION

As a result of heat generation due to the action of friction forces, contact conditions
deteriorate: the nominal contact area decreases, the temperature rises, the irregularity of
its distribution (over the friction surface) inci eases, and so on. These processes progress
quickly and after a short while cause the failure of the whole system. Extreme temperature
estimates over actual contact spots can be calculated and measured. It is rather difficult to
find the maximum temperature at the frictional contact spots since their size is extremely
small, but the inertia of the most sensitive thermal couples exceeds the time of existence of
contact spots by more than one order of magnitude [see, e.g. Chichinadze et al. (1979)].
In these conditions the most convenient and least difficult method for estimating tem­
perature and pressure in the frictional contact is by calculation. Here the calculation model
must take into account both the conditions in the frictional contact and the discrete
character of the interaction. For example, during intensive momentary breakage the con­
vective heat transfer does not exceed 2-3% of the heat quantity generated in the contact
[see, e.g. Chichinadze et al. (1986)], and in this case we may neglect the heat exchange over
the free surfaces of the system and significantly simplify the problem.

Insofar as temperature change and pressure concentration are unsteady processes, the
solution of contact problems of transient thermoelasticity with friction heat generation
must be considered. Plane problems have been considered in detail in Azarkhin and Barber
(1985, 1987). The axisymmetrical contact problem of uniform sliding of an elastic sphere
over the surface of an undeforming insulated half-space was discussed for the first time in
the work of Barber (1980). However, the solution was obtained under the assumption that
the contact pressure distribution could be described by Hertz formulas during all the
processes of interaction. It was shown that this gave an error of about 22% in the deter­
mination of the radius of the contact area. In the present article the same problem has been
solved without the above-mentioned limitations.

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

We consider an axisymmetrical transient contact problem for two semi-limited bodies,
one of which is sliding over the surface of the other with steady velocity v and pressing into
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it with a force P (Fig. 1.). Sliding is accompanied by heat generation over the contact
interface in the form of a heat flux

q(r, t) = jup(r, t), r:(: a(t), t> 0 (1)

(where a is the radius of contact area, p is the contact pressure, j is the coefficient of
friction) directed into the moving body. It is considered that an immovable body is a rigid
thermoinsulator; the convective heat transfer from the free surface of contacting bodies is
absent. There are no coupling tangential and normal tractions. This assumption does not
mean that the tangential traction on the surface is neglected. Indeed, the work done against
these tractions is the source of the heat generation. However, the elastic displacements
normal to the surface, caused by the tangential tractions, are much smaller than those
produced by the normal tractions, and the coupling effect is negligible.

In such a statement the solution to the problem can be presented as the superposition
of two problems:

(I) the finding of temperature stresses and deformations in the heat-conducting body
due to its heating by the heat flux (I) ;

(2) the solution to the isothermal problem of the contact of a body with the thermally
deformed surface and the rigid non-heat conducting half-space.

Thus, we shall write the normal displacements of points at the boundary of an elastic
half-space in the form

uAr, t) = u~(r, t)+u~(r, t), r> 0, t > O. (2)

The problem of the elasticity for bodies in contact will be considered in a quasi-static
statement. In this case for u~ we have the expression [see, e.g. Johnson (1987)]

(I-v) fa(1)
u~(r, t) = ~~ pes, t)L(r, s) ds, r > 0,

nJ1 0

2s [4rs JL(r,s) =-K -- ,
r+s (r+s)2

t>O (3)

(where K(-) is the complete elliptic integral of the second kind, J1 is the shear modulus, and
v is the Poisson's ratio).

r
v
•

Fig. I. Model of thermal contact.
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The solution of the transient heat equation for heat sources distributed with density
q(r, t) in the circle r :( aCt) over the half-space surface has the form [see, e.g. Carslaw and
Jeager (1959)]

1 ,i' i"U)ih [ r
2

-2rSCOS(O)+S2JSdOdSdrT(r, t) = q(s, r) exp - , ,
4pc(nk)32 0 0 0 4k(t-r) (t_r)312

(4)

where T is the temperature, k is the thermal diffusivity, p is the density, and c is the specific
heat. Normal displacements correspond to the temperature field (4) [see, e.g. Barber (1972)]

, __ ~itia(t) i2n [ .. _r
2

-2rSCOS(O)+S2JSd8dsdr
uc(r,t)- 4 q(s,r)<I> 1.5,2, 4k(-) (_)'

n oo 0 tr tr
(5)

(where 6 = IX(I +V)/A is the coefficient of thermal distortivity, Ais the thermal conductivity,
IX is the coefficient of linear thermal expansion, and <I> is the degenerated hypergeometric
function).

Considering that the surface of the conducting elastic body is slightly distorted with
radius curvature, the condition of the contact of bodies can be written

g(r,t) == u z (r,t)-I1(t)+r2/2R = 0, r:( a(t) , t> 0 (6)

where Ll(t) is the approach of bodies as two rigid solids.
Substituting expressions (3) and (5) into correlations (2) and (6), we obtain the integral

equation of the problem:

(1- v)1au
) 6 1t 1"(/)izn

~- pes, t)L(r, s) ds- -4 q(s, r)<I>
nfl 0 n 0 0 0

[
.. _ rZ-2rSCOS(8)+s2Jsd8dsdr _ _ 2

x 1.5,2, 4k(t-r) (t-r) -Ll(t) r/2R, r:(a(t), t>O. (7)

To the integral equation (7) it is necessary to add the condition of equilibrium of bodies

and physical inequalities

ra(t)

2n Jo pes, t)s ds = P

per, t) ): 0, r:( aCt) , t > 0

g(r, t) > 0, r > aCt) , t > O.

(8)

(9)

(10)

In view ofconnection (I), the system of integral equations (7) and (8) allows definition
of the contact pressure per, t), the heat flux q(r, t), and the approach of bodies Ll(t). The
inequalities (9) and (10) allow the contact radius aCt) to be found.

Denote

The value

r = a*r, s = a*,S, t = (a~jk)i, r = (a~jk)f, a(t) = a(t)ja*,

p =(P/a~)p, T=(jvP/).a*)T, q =(fvP/a~)ij. (11 )
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ll).(I-v)
a = .

* 1.566rtflfv(l+v)'
(12)

this is a critical value of the contact radius as the temperature field (4) reaches steady state
[see, e.g. Barber (1976)]. As we seefrom eqn (12), a* does not depend upon the compressible
force P and is a boundary value of the contact radius at unlimited increase in P. Note that
in isothermal cases such a limit does not exist.

Taking into account notations (11), the system of integral equations (7) and (8) will
become (omitting waves over the values)

1 fUll)
- q(s, t)L(r, s) ds
n a

I fl fUll) f2n l r2 -2rSCOS(8)+s2]sd8dSdr
- 6.264 Ja Ja Ja q(s, r)<D 1.5,2, - 4(t-r) (t-r)

fU(ll
2n Ja pes, t)sds = I. (14)

Here ac = a(O)la* and 1\a(t) = 1\(t)I1\(O). The values a(O) and 1\(0), which correspond to
the solution of the isothermal Hertz problem, are given by Johnson (1987):

-l~ PR(1-V)]Ii3a(O) - 8 fl ,1\(0) = a2 (0)1 R.

Thus, the solution of the integral equation systems (13) and (14) depends upon one
independent parameter ac which characterizes the measure of surface coordination of
contacting bodies.

Remembering the notation (11) for a dimensionless temperature T(r, t), from eqn (4)
we find

-_I_fl fU(I) f2n l- r
2

-2rSCOS(8)+s2]sd8dSdr
T(r, t) -. q(s, r) exp 4k()

4n 3' 2 a a a t-r (t-r)3/2

and eqn (1) will take the form

q(r, t) = per, t).

(15)

(16)

PREVIEW OF THE ALGORITHM

We now build the number solution of the integral equations (13) and (14) by the
method of piecewise-constant approximation [see, e.g. Marchuk and Agoshkov (1981)].
For this purpose we shall divide the temporal interval [0, t] into I parts of the length f>t = til
by points 0 = to < t 1 < ... < t, = t. We shall divide the contact strip into n concentric
annuli of radii a, where 0 = aa < al < ... < an-l < an = aCt). Let us assume that the heat
flux is constant and equal to qij in every temporal-spatial region [ti - j, tJ x [a i _ j, aJ Then
at the moment of time t = t{ we obtain a discretized analogue of integral equations (14)
and (15):
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n

2n L qi/r;i5a = I, (18)
i= 1

where

1

til [(AiiY F j (R ik" Aiit) - (Ai=-IJYF[ (Rlk" Ai-=-l,i')]

Ciik, = - tn(AiJi) 2F[ (R,t" AiJi) - (A'~l'fYF[ (Rjt" A,~ l,p)], j #- I,

- tjt [(A iJi)2F j (Rjt" Aiit) - (A,~ [J,)2 F l (Rjt" A,~ IJ')]' j = I,

tIi =(l-j±0.5)bt, j= 1,2"",1.

The influence function Fo(r, a), on the basis of Johnson (1987), has the form

{
2a£(r/a), r ~ a

Fo(r, a) =
2r[£(a/r) - (I-a 2 /r 2 )K(a/r)], r > a

where K('), £(. ) are complete elliptic integrals of the first and second kind.
The function F[ (R, A) has been found in Barber (1972) as:

[
R2J XJ (2i+ 1)!t(_A2)i i . 2 (R/A)2j

In(A/2)+O,5 Y+-2 +L (2'+2)11"1' L(e!) ("-"+1)' R<A,A i~ 1 I 001.1 j~ 0 I }

F 1 (R,A) =

R "?- A,

(19)

where y = 0,577216 is Euler's constant, Cj = i!/(i-j)!/j!.
The system n + I of linear algebraic equations (l7) and (18) allows determination of

the unknown values qi/, (i = 1,2, ... , n) and Ao(t,), after which the contact pressure can be
found with formula (16).

We tested the present numerical method with problems which have analytical solutions.
For example, the algorithm for solving the contact problem was validated using a closed­
form solution of the isothermal Hertz contact problem from Johnson (1987). The numerical
algorithm gave very good accuracy.

The frictional temperature algorithm was tested by a variety of analytical solutions
from Carslaw and Jaeger (1959).

In the choice of the time step, it is necessary to be very careful since too great a time
step can lead to inaccuracy and instability. Difficulties can also be encountered if the time
step is too small. In this case the solution can lead to convergence on a spurious steady
state.

SAS 32: 16-G



2374 A. A. Yevtushenko and R. D. Kulchytsky-Zhyhailo

Some guidance as to the appropriate time step bt can be obtained from the parameter
E = nba/(2bt) 1/2 where ba is a representative measure of the spatial discretization. In the
present algorithm E is required to be less than 2.5 for the convergence of series in eqn (19).
At the first time step nba = ac• Therefore bt ~ 0.5 for ac = 2.5. Unfortunately, we could not
obtain an asymptotic expression for the functions F 1(R, A) at A > 2.5. We hope to do this
at a later date.

The contact radius a(tl) is not initially known, and it is defined by inequalities (9) and
(10). If a(tl) is defined inexactly, then at some points in the contact region a negative
contact pressure appears, and interpenetration of materials arises. We liberate points of the
first kind from the contact, and introduce points of the second kind into it, and repeat the
procedure. The convergence of such an algorithm has been proved in Azarkhin and Barber
(1987). Calculations show that no less than five iterations are necessary to receive a relative
exactness in 1% in determining a(tl)' We find the temperature in the contact area from the
equations

II I

T(rb tl) = L L qAikl'
i= I j= I

Here

f -2tjf[(Aij/fF2(Rjkl, AD,) - (Ai-::.1,/Y F2(Rjkl, Ai-=-l,/al

dijkl = 1+2tt[(Aift)2F2(Rt"Ai}I)-(Ai~1,il)2F2(RJI,Ai~1,/1)], j =/-1,

2tt[(Aift)2 F I (Rj!l, A,;)- (Ai~ 1,/1)2 F I (Rt" Ai~ 1,/1)], j = I,

xc ( A 2)i i . (R/A)2j

2E(R/A)/(nA) _n 1/2 L ~ ., L (cy .. R < A,
i~o(21+1)l.j~o (z-;+l)

F 2(R, A) = 2R 2A -2 [E(A/R) - (l-A ZR -Z)K(A/R)]/(nR)

_n l /z i.: (_R
2
)i t (Cj)2(A/R)Zj, R~A.

i~o(2i+I)i!j~o (j+l)

RESULTS AND DISCUSSION

The development of the dimensionless contact pressure distribution p in time is plotted
in Fig. 2. The curve 1= 0 conforms to the solution of the corresponding Hertz isothermal
problem. We can see that when dimensionless time reaches values larger than 2, the contact

0.8

0.2

1=0

o 0.6 1.0
'T/3.c

Fig. 2. Normalized pressure distribution p, as a function 1for a, = 2.5.
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Fig. 3. Reduction of contact area with time.

0.4

"i/ac
Fig. 4. Development of temperature distribution for a, = 2.5.

pressure does not change significantly. The change of contact area size is plotted in Fig. 3.
The value ii = I is noted by a small-dashed line when the temperature field becomes steady.
The contact radius at small «0.5) values f decreases linearly; in this range of f change we
may use an approximate solution obtained in Barber (1980) :

ii(l) = a(O) - 0.4251.

The distribution of dimensionless contact temperature f for values of the Fourier
criterion f = I, 2, 6 is shown in Fig. 4. The results of the present work have shown that
heat generation from the action of friction forces in frictional sliding contact leads to a
significant (in comparison with the isothermal case) redistribution of contact pressure. As
a result of temperature heating, the thermal distortion of the surfaces of elastic bodies takes
place, which leads to a decrease in contact area, and contact spots with excessively large
pressure and high temperature are formed. In the actual contact areas, the temperature can
exceed that permissible for friction couple boundaries, which, in turn, reduces to local
adhesion scoring and structure transformations that can propagate all over the friction
surface in the process of work.
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